NOAA's Colorado Basin River Forecast Center

Developing Climate-Informed Ensemble Streamflow Forecasts over the Colorado River Basin

W. Paul Miller Senior Hydrologist

2014 Upper Colorado River Basin Water Forum

November 5-6, 2014

Colorado Mesa University, Grand Junction, CO

Acknowledgements

 John Lhotak – Development and Operations Hydrologist

 Kevin Werner – NOAA Western Regional Climate Services Director

Michelle Stokes – Hydrologist In Charge

Overview

- Points to Take Away
- Background
- Data and Methodology
- Provisional Results
- Next Steps

Points to Take Away

- The CBRFC is attempting to utilize climate information to inform long-term streamflow projections
 - Utilize projections of precipitation and temperature change from BCSD CMIP3 and CMIP5 data to inform historical inputs driving ESP products
 - Provisional results indicate earlier and decreased seasonal (April – July) runoff

Points to Take Away

- Further efforts will attempt to incorporate:
 - Changes to evapotranspiration
 - Use of a stochastic weather generator
 - Couple with a reservoir operations model
- Will eventually separate runs by SRES and RCP scenarios

Background

- Stakeholders throughout the Colorado River Basin are developing long-term policy guidelines
 - Some decisions are based on CBRFC forecasts
 - Agencies needs to take climate change information into account
- CBRFC would like to provide decision support

Background

- CBRFC ensemble forecasts rely on current and initial conditions and future climate (precipitation and temperature) as defined over a historical period spanning 1981 – 2010
 - Can also include 5-day QPF and 10-day QTF
 - Limited by sequencing and magnitude of climate events in the historical period

Ensemble Streamflow Prediction

Taylor - Taylor Park Res (TPIC2) Apr-Jul 2014 Runoff Forecast (Includes 5 Day Precip Forecast) 2014-06-01 Official 50% Forecast: 118 kaf (119% of average)

Plot Created 2014-08-11 12:49:46, Lastest ESP Run from 2014-07-30, NOAA / NWS / CBRFC
The latest (2014-07-30) 50% ESP forecast (110 kaf) changed 0.2 % from previous day and -7.4 % from July 1

**These ESP forecasts do not include observed and are not total runoff.

How can we help?

- Providing decision support for policy makers means making projections at a policy scale
 - Information from the latest climate projections
 - Innovate ways to develop climate patterns outside of the historical record
 - Working with the University of Colorado
 - Incorporation of other climatic indicators
- Partner with stakeholders to understand needs

Data and Methodology

- To "inform" our current historical input of climate data we utilized projected changes from BCSD CMIP3 and CMIP5 data
 - BCSD CMIP data is made available by Reclamation, LLNL, and others at:

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html

- Gridded projections of climate need to be averaged over spatial zones defined in the CBRFC's lumped hydrologic model
- Currently averaged over all model runs

Need for Downscaling

Gridded to Lumped Inputs

Data and Methodology

- Average, relative modeled change from 1981-2010 to three future periods is derived
 - **–** 2010-2039, 2040-2069, 2070-2099
 - Gridded values are averaged over each zone
 - Percent change in precipitation is considered
 - Degrees Celsius change in temperature is considered
- Historical information perturbed to develop "climate informed" input

BCSD CMIP5 Ensemble Mean Temperature Change from 1981-2010 to 2010-2039

BCSD CMIP5 Ensemble Mean Temperature Change from 1981-2010 to 2040-2069

Results - Temperature

BCSD CMIP5 Ensemble Mean Temperature Change from 1981-2010 to 2070-2099

BCSD CMIP5 Ensemble Mean Precipitation Change from 1981-2010 to 2010-2039

BCSD CMIP5 Ensemble Mean Precipitation Change from 1981-2010 to 2040-2069

Results - Precipitation

BCSD CMIP5 Ensemble Mean Precipitation Change from 1981-2010 to 2070-2099

Results - Streamflow

Avg Seasonal CMIP5 Change from 1981-2010 to 2070-2099

Streamflow Impacts

Streamflow Impacts

Limitations

- Process is still dependent on historical sequences of precipitation and temperature
- Process does not incorporate a dynamic ET component (yet!). ET is derived using a monthly coefficient that is static through time
- Possible wet bias introduced during the BCSD process?

Next Steps

- Working with colleagues at the University of Colorado to utilize a stochastic weather generator
 - Capable of producing weather sequences not observed in the historical record
 - Can be weighted to incorporate other climate information (e.g., teleconnections, CPC info)
 - Latest results show increased reliability and accuracy using IRI forecast information

Next Steps Continued

- Build on past work done in our office to incorporate dynamic evapotranspiration
- Partner with stakeholders to make this work for them
 - Impacts to reservoir operations?
 - Inform long-term policy development
- Compare with recently released VIC streamflow projections

Questions?

paul.miller@noaa.gov

www.cbrfc.noaa.gov

Extra Slides

paul.miller@noaa.gov

www.cbrfc.noaa.gov

Avg Annual CMIP5 Change from 1981-2010 to 2010-2039 >=50 0 0 0 00 from Historical Period Latitude -30E--110 Avg Annual CMIP5 Change from 1981-2010 to 2040-2069 Latitude Percent (-40 -116 -108 -106 Longitude

Streamflow Impacts

